学术动态

【学术讲座-第67期“相约星期五”学术沙龙】Change-Point Detection with Local Trend Adjustment

发布日期:2025-10-09 13:22:00   来源:统计与数学学院   点击量:


报告主题:Change-Point Detection with Local Trend Adjustment

时间:20251010日 13:00-13:45

地点:腾讯会议 会议号:350-8579-6257

报告人:贾圣吉

 

报告内容简介:

        Identifying the number and precise locations of multiple change points in long sequences is a critical issue in statistics and machine learning. However, accurate change point detection can be compromised by the presence of local trends in the sequence when using the conventional parametric piecewise-constant model. In this paper, we introduce an adaptive Neyman test to assess the presence of local trends. Subsequently, we develop a novel changepoint detection procedure based on a partially linear model that incorporates these local trends. Furthermore, we extend the proposed testing and estimation methods to multidimensional cases, facilitating the identification of common change points in array-based data. Our methods are straightforward to implement, and we evaluate their numerical performance through simulations and the analysis of SNP genotyping data.

 

主讲人简介:

        贾圣吉,美国威斯康星大学麦迪逊分校统计学博士,上海立信会计金融学院应用统计系讲师,硕士生导师。中国现场统计研究会大数据统计分会理事,全国工业统计学教学研究会民族统计与数据科学分会理事。主要从事机器学习,高维统计,非参数与半参数统计,变点估计,纵向数据与空间数据等领域的研究,在Journal of Machine Learning Research, Statistica Sinica, Bioinformatics, IEEE Transactions系列杂志发表论文10余篇。主持或参与多个国家级和省部级科学基金项目。
分享到: